
United States Patent [19J

Franaszek et al.

[54] ADAPTIVE MULTIPLE DICTIONARY DATA
COMPRESSION

[75] Inventors: Peter Anthony Franaszek, Mt. Kisco;
John Timothy Robinson, Yorktown
Heights; Joy Aloysius Thomas, White
Plains, all of N.Y.

[73] Assignee: International Business Machines
Corporation, Armonk, N.Y.

[*] Notice: The terminal 17 months of this patent has
been disclaimed.

[21]

[22]

[51]
[52]
[58]

[56]

Appl. No.: 393,967

Filed: Feb. 24, 1995

Int. Cl.6
.. H03M 7/00

U.S. Cl. .. 341/51
Field of Search 341/51, 65, 59,

341/106, 107

References Cited

U.S. PATENT DOCUMENTS

5,204,756 4/1993 Chevion et al. .

BLOCKS
220

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
US005870036A

[11] Patent Number:

[45] Date of Patent:

5,870,036
*Feb. 9, 1999

5,389,922 2/1995 Serussi et al. 341/51

5,467,087 11/1995 Chu ... 341/51

Primary Examiner-Brian K. Young

Attorney, Agent, or Firm-Richard M. Ludwin; Heslin &

Rothenberg, P.C.

[57] ABSTRACT

A system and method for compressing and decompressing

data using a plurality of data compression mechanisms.

Representative samples of each block of data are tested to

select an appropriate one of the data compression mecha

nisms to apply to the block. The block is then compressed

using the selected one of the mechanisms and the com

pressed block is provided with an identifier of the selected

mechanism. For decompression, the identifier is examined to
select an appropriate one of the data decompression mecha

nisms to apply to the block. The block is then decompressed

using the selected one of the mechanisms.

235

17 Claims, 9 Drawing Sheets

COMPRESSED
BLOCKS

• • • ---- DATA
COMPRESSOR ---- • ••

210
TYPE: DAT A TYPE

<TEXT, IMAGE, ETC.)
CDPTIONAU

240

COMPRESSED
DATA BLOCKS

•••

230

COMPRESSION
METHOD TABLE 1

230
CMD: COMPRESSION

METHOD DESCRIPTION
•••

RUN-LENGTH
02

n ••• D

LZl

• • •

2400.

270

DATA
DE-COMPRESSOR

D

DICTIONARY
BLOCKS

250

UNCOMPRESSED
BLOCKS

q ... n
280r

NetApp; Rackspace Exhibit 1003 Page 1

5 -CPU FIG. 1

FIRST
30~ MEMORY

D UN COMP-
I I RESSED COMPRESSOR

DATA
15~ I II BLOCK

• • •

D D I DE-COMPRESSOR I

10 40

SECOND
MEMORY

D COMPRESSED!
DATA

BLOCKS1 D ... !
D O D

20 - '---25

d •
\JJ. •
~
~
~

=

"'!"j
~

"?'
\C
~

'"""' \C
\C
\C

'Jl

=-~
~
'"""' 0,
\C

Ul
00
.....::. =

8
0--,

NetApp; Rackspace Exhibit 1003 Page 2

205 DATA BLOCKS

TYP TYP

• • •

210
TYPE: DATA TYPE

<TEXT, IMAGE, ETC.)
<OPTIONAL)

240

COMPRESSED
DATA BLOCKS

FIG. 2
220

DATA
COMPRESSOR

COMPRESSION
METHOD TABLE

•••

~NGTH

LZl

• • •

2400.

COMPRESSED
BLOCKS

235 CMD

1

02 ... D
[J

CMD

• ••

230
CMD: COMPRESSION

METHOD DESCRIPTION

DICTIONARY
BLOCKS

250

CMD CMD 270
UNCOMPRESSED

BLOCKS

•••

230

DATA
DE-COMPRESSOR • • •

280

d •
\JJ. •
~
~
~

=

"!"j
~

"?'
~~

'"""' ~
~
~

'Jl

=~
~
N

0,
~

Ul
00
.....::. =

8
0--,

NetApp; Rackspace Exhibit 1003 Page 3

(210
UNCOMPRESSED

DATA BLOCK

220

~

FIG. 3

DATA COMPRESSOR

DETERMINE TEXT
EACH CML METHOD

C,DICT.)

))
I I

310

330

1

SELECT
BEST

METHOD
C,DICT.)

I

~
\.

\

' CDD NOT
COMPRESS)

-

340

COMPRESS
AND SET ~ -

CMD

COMPRESSED
DATA

230 __/ BLOCK

d •
\JJ. •
~
~
~

=

"'!"j
~

"?'
~~

"""" ~
~
~

'Jl

=~
~
~

0,
~

Ul
00
.....::. =

8
0--,

NetApp; Rackspace Exhibit 1003 Page 4

U.S. Patent Feb. 9, 1999 Sheet 4 of 9 5,870,036

FIG. 4A

ND

SET CML=
DEFAULT-CML 409

404

YES

SET CML=
CML-TABLE
CTYPECB))

407 '-------iSET E TD FIRS T~---__J

ND

419

421

424

411

CML ENTRY

SET D-LIST=
DEFAUL T-D-LIST

SET M= METHODCE) j

YES

YES

SET D-LIST=
D-LIST-TABLE

CTYPECB))

REMOVE: E FROM CML"--_____ ____J 417

FOR EACH D
IN D-LIST:

SET E TO

YES

TEST

NEXT ENTRY 431
IN CML

ADD CM,D)
TD CML

427_)

NetApp; Rackspace Exhibit 1003 Page 5

U.S. Patent Feb. 9, 1999 Sheet 5 of 9 5,870,036

FIG. 48 TEST

SET E TD FIRST 434
CML ENTRY; I=l

444

COMPRESS BCbi, b2)
USING METHOD CE)

INTO K BYTES

451
NO

SET E TD
NEXT ENTRY IN

CML; I=I +1

459

447

SET
CRTTCD=K

NO

DD NOT
COMPRESS B

439

SET M=METHDD CE);
D=DICTIDNARY CE)

COMPRESS BCb1, b2)
USING METHOD M ~

DICTIONARY D
INTO K BYTES

441

YES

FIND Q SUCH
THAT CRTTCQ) 454

IS MINCCRTT)

YES

COMPRESS

NetApp; Rackspace Exhibit 1003 Page 6

U.S. Patent

470

Feb. 9, 1999 Sheet 6 of 9

FIG. 4C

ND

COMPRESS

SET E TD Q'TH
ENTRY IN CML .__.-- 461

YES

5,870,036

467

COMPRESS B INTO B'
USING METHOD (E)

COMPRESS B INTO B'
USING METHOD (E) &

DICTIONARY (E)

STORE E IN CMD
AREA OF B'

OUTPUT B'

475

NetApp; Rackspace Exhibit 1003 Page 7

230

1
COMPRESSED
DATA BLOCK ... 1

FIG. 5
270

DATA DE-COMPRESSOR

FIND DE-COMPRESS METHOD USING METHOD ~ -()DICT.) C)DICT .) FROM CMD

510_) 520_)

~

280

I
UNCOMPRESSED

DATA BLOCK

d •
\JJ. •
~
~
~

=

"'!"j
~

"?'
~~

"""" ~
~
~

'Jl

=~
~
-..J

0,
~

Ul
00
.....::. =

8
0--,

NetApp; Rackspace Exhibit 1003 Page 8

U.S. Patent Feb. 9, 1999 Sheet 8 of 9 5,870,036

FIG. 6

210.___/ UNCOMPRESSED BLOCKS
----~~~~A.~~~--~----

~ t
STORE

220
RETRIEVE

270

' (I /
~ DATA DATA

COMPRESSOR - - :-COMPRESSOR

COMPRESSION
METHOD TABLE DIC T.?

ARITHMETIC N
/"

~r
600

I

/"' RUN-LENGTH N

~601 BLOCK ID
DIC /

--- ADDR. STATIC DICT. y

MAP DI REC 602
DICT.=lst y

) \ 603 SUB-BLOCK
E)40

230\
630 620 DICT.=CATENATE y

I 604 SUB-BLOCKS ..._,..
I

240;
I MEMORY

COMPRESSED : DICTIONARY
2400.

BLOCKS BLOCKS
I

(~50
I .i--)

I

NetApp; Rackspace Exhibit 1003 Page 9

UNCOMPRESSED
DATA BLOCKS ~-

----1
READ-ONLY-MEMORY . I

FIG. 7 240
I ---- RUN-LENGTH

STORE RETRIEVE 714--1 ARITHMETIC r

708'..... _J
STATIC DICTIONARY -1 µ.P

r--=-:-:::

I DICTIONARY) 1st SUB-BLOCK

I DICTIONARY) CATENATE
- - -r-- - :--I ~ ---~)-~ I I (630 ' \ 640 I ---

CONTROL I I BLOCK ID DICTIONARY I
ARITHMETIC CODE I I ADDRESS DIRECTORY

COMPRESSION _r
MAP I .

CODE C
?EAD-ONLYI LRANDOM ACCESS MEMORY

MEMORY_j ____
7

- _J

RUN-LENGTH -~ 716
.

COMPRESSION
,........___ 710

L

CODE C

L -r--- -1 - r-- - -
I

DICTIONARY
I r

230 -+ COMPRESSED J COMPRESSION
DICTIONARY I CODE C I

BLOCKS
- I

718--i
BLOCKS

I I
!RANDOM ACCEssl "- ~RANDOM ACCESS
L ___l1EMORY L _MEMORY~

N I

N I

: I

y~
2400.

702

704

706

d
•
\JJ.
•
~
~
~

=

"'!"j
~

"?'
~~

'"""' ~
~
~

'Jl

=~
~
~

0,
~

Ul
00
.....::. =
8
0--,

NetApp; Rackspace Exhibit 1003 Page 10

5,870,036
1

ADAPTIVE MULTIPLE DICTIONARY DATA
COMPRESSION

I. BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates in general to data processing sys
tems and, more specifically, to a system and method for
compressing data.

2. Background of the Invention

5

2
a few thousand entries that concentrate on words such as
"Ford," "Jones," and "1994." Once this dictionary is
compiled, it is used by both the encoder and the decoder as
required.

There are advantages and disadvantages to static dictio
naries. Nevertheless, dictionary-based compression schemes
using static dictionaries are mostly ad hoc, implementation
dependent, and not general purpose.

Many of the well-known dictionary-based processes are
10 adaptive. Instead of having a completely defined dictionary

when compression begins, adaptive schemes start out either
with no dictionary or with a default baseline dictionary. As
compression proceeds, the processes add new phrases to be

In general, data compression involves taking a stream of
symbols and transforming them into codes. If the compres
sion is effective, the resulting stream of codes will be smaller
than the original symbol stream. The decision to output a
certain code for a certain symbol or set of symbols is based 15

on a model. The model is simply a collection of data and
rules used to process input symbols and determine which
code(s) to output. A computer program may use the model

used later as encoded tokens.
For a further discussion of data compression in general,

please refer to The Data Compression Book, by Mark
Nelson, © 1992 by M&T Publishing, Inc., which is hereby
incorporated by reference herein.

to accurately define the probabilities for each symbol in
order to produce an appropriate code based on those prob- 20

abilities.

As mentioned, the history of past symbols of a sequence
often provides valuable information about the behavior of
the sequence in the future. Various universal techniques have
been devised to use this information for data compression or
prediction. For example, the Lempel-Ziv ("LZ") compres-

Data compression techniques often need to be lossless
(without incidences of error or loss of data). Exceptions to
this include, for example, certain applications pertaining to
graphic images or digitized voice. Lossless compression
consists of those techniques guaranteed to generate an exact
duplicate of the input data stream after a compress/expand
cycle. This is the type of compression often used when
storing database records, spreadsheets, or word processing
files. In these applications, the loss of even a single bit can
be catastrophic.

Lossless data compression is generally implemented
using one of two different types of modeling: statistical or
dictionary-based. Statistical modeling reads in and encodes
a single symbol at a time using the probability of that
character's appearance. Statistical models achieve compres
sion by encoding symbols into bit strings that use fewer bits
than the original symbols. The quality of the compression
goes up or down depending on how good the program is at
developing a model. The model has to predict the correct
probabilities for the symbols. The farther these probabilities
are from a uniform distribution, the more compression that
can be achieved.

In dictionary-based modeling, the coding problem is
reduced in significance, making the model supremely impor
tant. The dictionary-based compression processes use a
completely different method to compress data. This family
of processes does not encode single symbols as variable
length bit strings; it encodes variable-length strings of
symbols as single pointers. The pointers form an index to a
phrase dictionary. If the pointers are smaller than the phrases
they replace, compression occurs. In many respects,
dictionary-based compression is easier for people to under
stand. In every day life, people use phone numbers, Dewey
Decimal numbers, and postal codes to encode larger strings
of text. This is essentially what a dictionary-based encoder
does.

In general, dictionary-based compression replaces
phrases with pointers. If the number of bits in the pointer is
less than the number of bits in the phrase, compression will
occur. However, the methods for building and maintaining a
dictionary are varied.

A static dictionary is built up before compression occurs,
and it does not change while the data is being compressed.
For example, a database containing all motor-vehicle reg
istrations for a state could use a static dictionary with only

25 sion process, which is discussed within Compression of
Individual Sequences by Variable Rate Coding, by J. Ziv and
A Lempel, IEEE Trans. Inform. Theory, IT-24: 530-536,
1978 (which is incorporated by reference herein), uses the
past symbols to build up a dictionary of phrases and com-

30 presses the string using this dictionary. As Lempel and Ziv
have shown, this process is universally optimal in that the
compression ratio converges to the entropy for all stationary
ergodic (of or related to a process in which every sequence
or sizeable sample is equally representative of the whole)

35 sequences. Thus, given an arbitrarily long sequence, such
compression operates as well as if the distribution of the
sequence was known in advance.

The Lempel-Ziv compression method has achieved great
popularity because of its simplicity and ease of implemen-

40 tation (actually, Lempel-Ziv is often used to denote any
dictionary based universal coding scheme, as a result, the
standard method described herein is only one of this large
class). It asymptotically achieves the entropy limit for data
compression. However, the rate of convergence may be slow

45 and there is scope for improvement for short sequences. In
particular, at the end of each phrase, the process returns to
the root of the phrase tree, so that contextual information is
lost. One approach to this problem was suggested by
Plotnik, Weinberger and Ziv for finite state sources, as

50 described within Upper Bounds on the Probability of
Sequences Emitted by Finite-State Sources and on the
Redundancy of the Lempel-Ziv Algorithm, by E. Plotnik, M.
J. Weinberger and J. Ziv, IEEE Trans. Inform. Theory,
IT-38(1): 66-72, January 1992, which is incorporated by

55 reference herein. Their idea was to maintain separate LZ like
trees for each source state (or estimated state) of a finite state
model of the source. Plotnik, Weinberger and Ziv showed
that this procedure is asymptotically optimal.

U.S. patent application Ser. No. 08/253,047, filed on Jun.
60 2, 1994 and assigned to the same assignee as the present

invention describes a compression system wherein contex
tual information is implemented in conjunction with a
dictionary-based compression process within a data process
ing system. Before encoding a next phrase within an input

65 string of data, the compression system, through dynamic
programming, derives the statistically best set of dictionaries
for utilization in encoding the next phrase. The selection of

NetApp; Rackspace Exhibit 1003 Page 11

5,870,036
3 4

this set of dictionaries is dependent upon each dictionary's
past utilization within the process. Thus, the choice of
dictionaries is directly related to each of their performance
on compression, and not on a presumed model for the
sequence as is required in a compression technique utilizing 5

a state machine description of the source, which is available

IV. DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A system structure suitable for use in conjunction with the
present invention is shown in FIG. 1. The system includes a
CPU 5 which accesses a first memory 10 containing uncom
pressed data blocks 15. Within the same information pro
cessing system as the CPU 5 or within another "remote"
system, there is a second memory 20. The memories 10, 20

to both the encoder and decoder. The selected set of dictio
naries is implemented by the data processing system to
encode the next phrase of data. The context of the phrase is
used to select a particular dictionary within the selected set
for the encoding process, which computes a pointer to the
phrase within the dictionary that corresponds to the next
phrase.

10
can be semiconductor memories, magnetic storage (such as
a disk or tape), optical storage or any other suitable type of
information storage media. The data blocks are transferred
between the first and second memories.

The above-technique has the property that the compressor
and de-compressor can each compute from the preceding 15

string, the dictionary which will be used for the next phrase.
This has the advantage that the identity of the dictionary
need not be included. However, the chosen dictionary may
not in fact be the best one to use, as the decision of which

To increase the number of data blocks that can be stored
in the second memory 20 given a fixed second memory size,
data blocks 25 may be stored in a compressed format in the
second memory. For this purpose there is a compressor 30
that compresses data blocks as they are transferred to the
second memory, and a de-compressor 40 that de-compresses
data blocks as they are transferred to the first memory. to use is based on estimates. Further, in some cases 20

improved compression could result from using other types In the present description, the word "coding" is used to
refer generically to any of encoding (compressing) or decod
ing (decompressing). The word "CODEC" refers to an
apparatus that performs both encoding and decoding.

of compression techniques.

II. SUMMARY OF THE INVENTION

It is an object of this invention to dynamically compress 25

data blocks by using the best of a given set of methods, and
for dictionary-based compression, by using the best of a
given set of dictionaries.

FIG. 2 shows a data compressor 220 and data
de-compressor 270 which operate in accordance with the
principles of the present invention. The data compressor 220
and de-compressor 270 and the associated logic take the
places of, respectively, the compressor 30 and decompressor In accordance with one aspect of the present invention,

there is provided a system and method for compressing data
using a plurality of data compression mechanisms. Repre
sentative samples of each block of data are tested to select
an appropriate one of the data compression mechanisms to
apply to the block. The block is then compressed using the
selected one of the mechanisms and the compressed block is
provided with an identifier of the selected mechanism.

In accordance with another aspect of the present invention
there is provided a system and method for decompressing
data. using a plurality of data decompression mechanisms.
Each block of data includes a coding identifier which is
indicative of the method or mechanism used to compress the
block. The coding identifier is examined to select an appro
priate one of the data decompression mechanisms to apply
to the block. The block is then decompressed using the
selected one of the mechanisms.

III. BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 shows a system structure suitable for use m
conjunction with the present invention;

FIG. 2 shows a data compressor and data de-compressor
270 in accordance with the principles of the present inven
tion;

FIG. 3 shows the overall structure of the data compressor
of FIG. 2;

FIGS. 4A, 4B and 4C are a flow chart of the operation of
the data compressor of FIG. 3;

FIG. 5 shows the overall structure of the data decompres
sor of FIG. 2;

30 40 of FIG. 1. In this embodiment, the uncompressed data
blocks 210 that can optionally contain type information 205.
The type information can be, for examples, image data
encoded in a given format, source code for a given pro
gramming language, etc. The data blocks 210 are input to the

35 data compressor 220.

The data compressor 220 and data de-compressor 270
share a compression method table 240 and a memory 250
containing a number of dictionary blocks 1,2,n. It should be
understood that the table 240 and the memory 250 can each

40 be a single shared entity or, alternatively, can be duplicated
such that one of each is located locally at the data compres
sor 220 and the data decompressor 270. The compression
method table 240 can include, for example, of an array of
pointers to compression routines or device address of

45 compression/decompression hardware components. Each
method entry in the table 240 includes an identifier 240a
indicated whether the method is non-dictionary-based or
dictionary-based.

50
Dictionary blocks are identified by an index specifying

the offset of the block in the dictionary block memory. As
explained more fully below, the compressor 220 selects a
compression method. For dictionary-based methods the
compressor 220 also selects a dictionary block, to compress

55
the data. The compressor outputs compressed data blocks
230, with an index (M) 232 identifying the selected com
pression method, and for dictionary-based methods, dictio
nary block identifier (D), encoded in a compression method
description (CMD) area 235 in the compressed block.

FIG. 6 shows a storage system incorporating compression 60
& decompression in accordance with the principles of the
present invention; and

The use of a dictionary for data compression and decom
pression is well known in the art and described, for example,
in U.S. patent application Ser. No. 08/253,047, filed on Jun.
2, 1994 and in U.S. Pat. No. 4,814,746, both of which are
incorporated by reference herein as if printed in full below.

FIG. 7 is a block diagram of an encoder/decoder in a
compression system, in accordance with the principles of the
present invention. 65

Like reference numerals appearing in multiple figures
represent like elements.

Compressed data blocks 230, with the compression
method identifier M and for dictionary-based methods dic
tionary block identifier D encoded in the CMD area 235 are

NetApp; Rackspace Exhibit 1003 Page 12

5,870,036
5

input to the de-compressor 270. The de-compressor 270
de-compresses the block using the specified method found in
the compression method table 240 (using the compression
method identifier as an index), and for dictionary-based
methods, specified dictionary block found in the dictionary
block memory 250, and outputs uncompressed data blocks
280.

FIG. 3 shows the overall structure of the data compressor
220. Each component is explained more fully below. Given
an uncompressed block 205 as input, first, in block 310, a
compression method list (CML) is determined. The CML is
an array of entries of the form M or (M,D), where the latter
form is used for dictionary-based methods. M is an index
into the compression method table 240 previously described
with respect to FIG. 2, and Dis a dictionary block identifier
for a dictionary block contained in the dictionary block
memory 250, also previously described with respect to FIG.
2.

Next, in block 320, each method or (method,dictionary)
pair is tested on a sample taken from the uncompressed data
block 205, and the resulting sample compression is saved. In
block 330, the best method or (method,dictionary) pair is
found (i.e., the one giving the most compression). The best
method is readily determined by comparing the size of the
uncompressed same to the size of the compressed sample for
each method. In a preferred embodiment, the size of the
sample block as compressed by each of a number of methods
is stored in a table and the best method is determined by
examining the table to find the smallest compressed block.
If the best sample compression does not satisfy a threshold
condition (e.g. 30% compression as compared to the uncom
pressed sample), then it is decided at this point not to
compress the block as indicated by 335. In this case the
block will be stored in uncompressed format. Otherwise, in
block 340, the block is compressed using the best method
(and if applicable dictionary) found in block 330, the method
or (method,dictionary) pair is encoded in the CMD area 235
of the block, and the compressed data block 230 results as
output.

For dictionary compression methods, one way to test a
representative sample is to determine the compression ratios
of a given number (e.g. 30) phrases. It should be understood
that all of the phrases could be tested. For symbol based
compression (such as Huffman or Arithmetic coding) the
compression of a given number (e.g. 150) or percentage (e.g.
10% to 20%) of the symbols can be tested.

The operation of the data compressor 220 is shown in
FIGS. 4A, 4B, and 4C.

In step 401, if a data type (e.g. text, image, etc.) for a
given uncompressed block B is available, in step 404 the
Compression Method List (CML) is set to a list of com
pression methods that have been preselected for that data
type. Otherwise, if no data type is available, in step 407 the
CML is set to a default list of compression methods.

Next, the following steps are done for each dictionary
based method M in the CML. This involves checking each
entry E in the CML. First, in step 409, E is set to the first
CML entry. Next, in step 411, it is determined if the method
of E is dictionary-based. If it is not, step 429 is executed,
where it is checked if E was the last CML entry. If it was not,
in step 431 E is set to the next CML entry, and the method
returns to step 411. If step 429 determines that E was the last
CML entry, the loop is exited, and the method proceeds to
step 434.

If the test in step 411 determines that the method of E was
dictionary-based, the following steps are performed, with
control passing to step 429 at the completion of these steps.

6
In step 414, it is determined if a data type is available (i.e

the block includes a "data type" entry in the type field 205),
If a data type is available, in steps 417, 421, 424, and 427,
the CML is expanded by replacing E with the list (M,Dl),

5 (M,D2), . . . , (M,Dj), where (Dl, . . . , Dj) is a list of
dictionary block identifiers that have been preselected for
the data type when using compression method M.
Otherwise, if no data type is available), steps 419, 421, 424,
and 427, replace E with the list (M,Dl'), (M,D2'), ... ,

10
(M,Dk'), where (Dl', ... , Dk') is a default list of dictionary
block identifiers for compression method M.

15

20

Next, steps 437, 439, 441, 444, and 447, are done for each
entry E of the form Mor (M,D) in the CML (where the latter
entry is for dictionary-based methods).

In step 434, E is set to the first entry in the CML, and I,
which will be used as the entry number, is set to 1. At the
completion of steps 437-447, in step 449 it is checked if E
was the last CML entry. If it was not, E is set to the next
CML entry and I is incremented in step 451, with control
returning to block 437. Otherwise the loop is exited, with
control passing to step 454.

Steps 437-447 comprise the body of the loop. Steps 437,
439, 441, and 444, apply compression method M (and
dictionary D if M is dictionary-based) on a sample from B,

25
B(bl,b2) consisting of bytes bl through b2 consecutively in
B, resulting in a compressed sample of length K bytes. Next,
in step 447, the resulting compressed sample length K is
saved as entry CRTT(I) in compression ratio test table
CRTT, where this table is an array of integers. Note: the

30
above compression tests are independent, and although the
figure shows a sequential loop, implementations are possible
in which all these tests are performed in parallel.

Next, in step 454, the smallest compressed length in the
table CRTT is found, say entry CRTT(Q). In step 457, the

35 smallest compressed length is compared against a threshold.
If all uncompressed input blocks are a given fixed size, the
threshold can be constant; otherwise, the threshold can be
computed as a function of the input block size. For example,
the threshold can be computed as a given fraction of the size

40 of the block currently being compressed.
If step 457 determines that CRTT(Q) is not sufficiently

small, in step 459 the data block B is not compressed.
Otherwise, if step 457 determines that CRTT(Q) is suffi
ciently small, in step 461, Eis set equal to the Q'th entry in

45 the CML, where E is of the form M or (M,D). In steps 464,
467, and 470, B is compressed using M, and if M is
dictionary-based, dictionary D, into a block B'. Next, in step
457, E is recorded in the CMD (compression method
description) prefix area of the compressed block (B'), and the

50 resulting block B' is output.
FIG. 5 shows the structure of the decompressor 270.

Given a compressed block 230 as input, first, in block 510
the compression method used to compress the block is found
(by decoding the CMD field), along with the dictionary

55 identifier of the dictionary used if the method is dictionary
based. Next, in block 520, the compression method and
dictionary (if applicable) is used to decompress the block,
resulting in the uncompressed data block 280 as output.

FIG. 6 illustrates an application of the principles of the
60 present invention to a storage system in which there is a

random access memory 620 into which arbitrary blocks of
data are stored and retrieved. In order to increase the total
number of bytes of uncompressed data blocks that can be
stored before the memory becomes full, uncompressed

65 blocks 210 are compressed by a data compressor 220 before
being stored as compressed blocks 230, and de-compressed
by a data de-compressor 270 when they are retrieved.

NetApp; Rackspace Exhibit 1003 Page 13

5,870,036
7 8

a predetermined set. For example, this set could be initially
empty, and dictionaries generated by a dictionary-based
compression method could be added to the set as subsequent
blocks are compressed, until a maximum number of dictio-

In this example, part of the memory 620 is used to store
dictionary blocks 250. The dictionary blocks include some
number of fixed, static blocks, determined before hand, and
also of some number of blocks that are created and subse
quently deleted in a fashion subsequently to be described. 5 nary blocks is reached.

Furthermore, if there are currently no compressed blocks
requiring a given dictionary block for de-compression (this
can be determined by examining the CMD fields), the given
dictionary block can be removed from the current set of

For simplicity, assume that all uncompressed data blocks
are a given fixed size, say 4096 bytes. Each such block can
be considered to consist of 8 512-byte sub-blocks, for
example. In some cases it may happen that using the first
such sub-block as a dictionary may yield better compression
than any of the fixed static dictionaries. This method is
shown as 602 in the compression method table 240.
Alternatively, take the first 64 bytes of each sub-block, and
concatenating these into a 512-byte dictionary, could be the
best dictionary for some blocks having certain phrase pat
terns. This method is indicated by 603 in the figure. The
other three methods indicated in the figure are arithmetic
coding 600, run-length coding 601, and LZl using one of the
fixed set of static dictionaries 602.

10 dictionary blocks.
Among other possibilities, the set of dictionary blocks

could be managed using an LRU type policy: in order to add
a new dictionary block, the least-recently-used dictionary
block (not currently required for de-compression) could be

15 selected to be replaced.
Although the present invention and its advantages have

been described in detail, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the invention

The data compressor operates as previously described. 20 as defined by the appended claims.
However, if the best compression method is found to be that
using the first sub-block 602 or that using a concatenation of
multiple sub-blocks 603, the dictionary is stored as one of
the dictionary blocks 250 at this time, the dictionary direc
tory 640 is updated accordingly using standard techniques, 25
and the identity of the dictionary block as given by the
dictionary directory is stored in the CMD. In any case, the
compressed data block 230 is stored in the memory 620, and
the mapping of block identifiers to memory addresses 630 is
updated using standard techniques. Conversely, the data 30
de-compressor operates as previously described, however
when a compressed block is retrieved, if it is found that
either the first sub-block or concatenation of multiple sub
blocks methods was used, then if the compressed data block
is also being removed from the memory, the dictionary is 35
also removed from the set of dictionary blocks at this time.

FIG. 7 is a block diagram of an encoder/decoder in a
compression system, in accordance with the principles of the
present invention. The system of FIG. 7 includes a micro
processor (Up) 708 which controls the encoding and decod- 40
ing of the data blocks under control of program code 712
stored in a read only memory 710. The program code
implements the methods of FIGS. 4A-4C and the decom
pression of FIG. 5. The system also includes CODECs 702,
704, 706 which perform both the encoding and decoding 45
functions as determined by control data sent from the
microprocessor 708. The CODECs can be embodied in
hardware logic circuits or as program code executed by
microprocessor 708. The compression method table 240 is
stored in a read only memory 714 which is addressed and 50
read by the microprocessor. The block address ID map 630,
the dictionary directory 640, the dictionary blocks 250 and
the compressed blocks 230 are stored in random access
memories 716, 718, 720 (which can be multiple memories or
address spaces in a single memory). 55

The present system and method can be modified and
extended in a number of ways. For example multiple dic
tionary blocks can be used as a logical single dictionary. In
such an embodiment, a set of dictionary blocks, say Dl, D2,
... , Dn, can be used by a dictionary-based compression 60

method, say Lempel-Ziv 1 (LZl), as if the ordered set is
logically a single dictionary. In this case Dl, D2, ... , Dn

What is claimed is:
1. A method for compressing data using a plurality of data

compression mechanisms, comprising the steps of:
compressing, using said plurality of data compression

mechanisms, a portion of a block of the data to select
therefrom an appropriate one of the data compression
mechanisms to apply to the block;

compressing the block using the selected one of the data
compression mechanisms; and,

providing the compressed block with an identifier of the
selected one of the data compression mechanisms.

2. The method of claim 1 comprising the further step of
using the identifier to identify the one of the mechanisms to
be used to decompress the data.

3. The method of claim 1, wherein the data compression
mechanisms are selected from at least two of a run-length
encoder, an adaptive dictionary and a static dictionary.

4. The method of claim 1 wherein at least one of the data
compression mechanisms comprises a dictionary.

5. The method of claim 4 wherein the dictionary is of an
adaptive type.

6. A system for coding data, comprising:
a plurality of data compression mechanisms;
a memory for storing the data to be compressed;
first logic for compressing, using said plurality of data

compression mechanisms, a portion of a block of the
data to select therefrom an appropriate one of the data
compression mechanisms to apply to the block and for
routing the data to the appropriate one of the data
compression mechanisms for compression; and

second logic for providing each compressed block with an
identifier of the selected one of the data compression
mechanisms.

7. The system of claim 6 wherein the second logic
comprises further includes means for providing at least some
of the blocks with a field identifying a dictionary.

8. The system of claim 6 further comprising:
a plurality of decompression mechanisms; and,
routing logic for using the identifier to identify the one of

the mechanisms to be used to decompress the data and
for routing the each data block to an appropriate one of
the decompression mechanisms responsive thereto. are considered to be catenated into a single logical dictio

nary D, and pointers in the compressed output refer to
substrings in one of the n actual dictionary blocks.

9. A method for decompressing data using a plurality of
65 data decompression mechanisms, comprising:

As another modification, the set of dictionary blocks used
by the compressor and de-compressor need not be fixed to

decoding a coding identifier provided with each of a data
block to select an appropriate one of the data decom-

NetApp; Rackspace Exhibit 1003 Page 14

5,870,036
9

pression mechanisms to apply to the block, said coding
identifier specifying a data compression mechanism for
the block which is chosen by compressing at least a
portion of the block using a plurality of data compres
sion mechanisms to select therefrom the one appropri- s
ate data compression mechanism for the block; and,

decompressing the block using the selected one of the
data decompression mechanisms.

10. The method of claim 9 wherein the data compression
mechanisms are selected from at least two of a run-length 10

encoder, an adaptive dictionary and a static dictionary.

10
pression mechanisms to apply to the block and for
routing the block to the appropriate one of the data
decompression mechanisms for decompression, said
coding identifier specifying a data compression mecha
nism for the block which is chosen by compressing at
least a portion of the block using a plurality of data
compression mechanisms to select therefrom the one
appropriate data compression mechanism for the block.

14. The system of claim 13 wherein the logic comprises
means for using a portion of each block as a dictionary.

15. The system of claim 13 wherein the logic comprises
means for selecting subset of each block for use as a
dictionary, which yields the best compression.

11. The method of claim 9 wherein at least one of the data
decompression mechanisms comprises a dictionary.

12. The method of claim 11 wherein the dictionary is of
an adaptive type.

13. A system for coding data, comprising:

a plurality of data decompression mechanisms;

16. The method of claim 1, wherein said plurality of data

15 compression mechanisms comprises a set of dictionaries and
further comprising modifying said set of dictionaries prior to
compressing subsequent data blocks.

a buffer for receiving blocks of the data to be
decompressed, at least some of the blocks comprising
multiple data elements; and

logic for testing a coding identifier associated with each
block to select an appropriate one of the data decom-

17. The method of claim 9, wherein said plurality of data
decompression mechanisms comprises a set of dictionaries

20 and further comprising modifying said set of dictionaries
prior to decompressing subsequent data blocks.

* * * * *

NetApp; Rackspace Exhibit 1003 Page 15

